
Deriving Concept-Based User Profiles
from Search Engine Logs

Kenneth Wai-Ting Leung and Dik Lun Lee

Abstract—User profiling is a fundamental component of any personalization applications. Most existing user profiling strategies are

based on objects that users are interested in (i.e., positive preferences), but not the objects that users dislike (i.e., negative

preferences). In this paper, we focus on search engine personalization and develop several concept-based user profiling methods that

are based on both positive and negative preferences. We evaluate the proposed methods against our previously proposed

personalized query clustering method. Experimental results show that profiles which capture and utilize both of the user’s positive and

negative preferences perform the best. An important result from the experiments is that profiles with negative preferences can increase

the separation between similar and dissimilar queries. The separation provides a clear threshold for an agglomerative clustering

algorithm to terminate and improve the overall quality of the resulting query clusters.

Index Terms—Negative preferences, personalization, personalized query clustering, search engine, user profiling.

Ç

1 INTRODUCTION

MOST commercial search engines return roughly the
same results for the same query, regardless of the

user’s real interest. Since queries submitted to search
engines tend to be short and ambiguous, they are not likely
to be able to express the user’s precise needs. For example, a
farmer may use the query “apple” to find information about
growing delicious apples, while graphic designers may use
the same query to find information about Apple Computer.

Personalized search is an important research area that
aims to resolve the ambiguity of query terms. To increase
the relevance of search results, personalized search engines
create user profiles to capture the users’ personal prefer-
ences and as such identify the actual goal of the input
query. Since users are usually reluctant to explicitly provide
their preferences due to the extra manual effort involved,
recent research has focused on the automatic learning of
user preferences from users’ search histories or browsed
documents and the development of personalized systems
based on the learned user preferences.

A good user profiling strategy is an essential and
fundamental component in search engine personalization.
We studied various user profiling strategies for search
engine personalization, and observed the following pro-
blems in existing strategies.

. Most personalization methods focused on the crea-
tion of one single profile for a user and applied the
same profile to all of the user’s queries. We believe
that different queries from a user should be handled
differently because a user’s preferences may vary

across queries. For example, a user who prefers
information about fruit on the query “orange” may
prefer the information about Apple Computer for
the query “apple.” Personalization strategies such as
[1], [2], [8], [10], [13], [15], [17], [18] employed a
single large user profile for each user in the
personalization process.

. Existing clickthrough-based user profiling strategies
can be categorized into document-based and concept-
based approaches. They both assume that user clicks
can be used to infer users’ interests, although their
inference methods and the outcomes of the inference
are different. Document-based profiling methods try
to estimate users’ document preferences (i.e., users
are interested in some documents more than others)
[1], [2], [8], [10], [15], [18].1 On the other hand, concept-
based profiling methods aim to derive topics or
concepts that users are highly interested in [13], [17].
These two approaches will be reviewed in Section 2.
While there are document-based methods that con-
sider both users’ positive and negative preferences, to
the best of our knowledge, there are no concept-based
methods that considered both positive and negative
preferences in deriving user’s topical interests.

. Most existing user profiling strategies only consider
documents that users are interested in (i.e., users’
positive preferences) but ignore documents that users
dislike (i.e., users’ negative preferences). In reality,
positive preferences are not enough to capture the fine
grain interests of a user. For example, if a user is
interested in “apple” as a fruit, he/she may be
interested specifically in apple recipes, but less
interested in information about growing apples, while
absolutely not interested in information about the
company Apple Computer. In this case, a good user

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010 969

. The authors are with the Department of Computer Science and
Engineering, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. E-mail: {kwtleung, dlee}@cse.ust.hk.

Manuscript received 16 Sept. 2008; revised 25 Jan. 2009; accepted 20 May
2009; published online 4 June 2009.
Recommended for acceptance by C. Ling.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2008-09-0484.
Digital Object Identifier no. 10.1109/TKDE.2009.144.

1. In general, document-based profiling methods may also estimate the
properties of the documents that are likely to arouse users’ interest, e.g.,
whether or not the documents match the queries in their titles, URLs, etc.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

profile should favor information about apple recipes,
slightly favor information about growing apple, while
downgrade information about Apple Computer.
Profiles built on both positive and negative user
preferences can represent user interests at finer
details. Personalization strategies such as [10], [15],
[18] include negative preferences in the personaliza-
tion process, but they all are document-based, and
thus, cannot reflect users’ general topical interests.

In this paper, we address the above problems by
proposing and studying seven concept-based user profiling
strategies that are capable of deriving both of the user’s
positive and negative preferences. All of the user profiling
strategies are query-oriented, meaning that a profile is
created for each of the user’s queries. The user profiling
strategies are evaluated and compared with our previously
proposed personalized query clustering method. Experi-
mental results show that user profiles which capture both
the user’s positive and negative preferences perform the
best among all of the profiling strategies studied. Moreover,
we find that negative preferences improve the separation of
similar and dissimilar queries, which facilitates an agglom-
erative clustering algorithm to decide if the optimal clusters
have been obtained. We show by experiments that the
termination point and the resulting precision and recalls are
very close to the optimal results.

The main contributions of this paper are:

. We extend the query-oriented, concept-based user
profiling method proposed in [11] to consider both
users’ positive and negative preferences in building
users profiles. We proposed six user profiling
methods that exploit a user’s positive and negative
preferences to produce a profile for the user using a
Ranking SVM (RSVM).

. While document-based user profiling methods pio-
neered by Joachims [10] capture users’ document
preferences (i.e., users consider some documents to be
more relevant than others), our methods are based on
users’ concept preferences (i.e., users consider some
topics/concepts to be more relevant than others).

. Our proposed methods use an RSVM to learn from
concept preferences weighted concept vectors repre-
senting concept-based user profiles. The weights of
the vector elements, which could be positive or
negative, represent the interestingness (or uninter-
estingness) of the user on the concepts. In [11], the
weights that represent a user’s interests are all
positive, meaning that the method can only capture
user’s positive preferences.

. We conduct experiments to evaluate the proposed
user profiling strategies and compare it with a
baseline proposed in [11]. We show that profiles
which capture both the user’s positive and negative
preferences perform best among all of the proposed
methods. We also find that the query clusters
obtained from our methods are very close to the
optimal clusters.

The rest of the paper is organized as follows: Section 2
discusses the related works. We classify the existing user
profiling strategies into two categories and review methods

among the categories. In Section 3, we review our persona-
lized concept-based clustering strategy to exploit the
relationship among ambiguous queries according to the user
conceptual preferences recorded in the concept-based user
profiles. In Section 4, we present the proposed concept-based
user profiling strategies. Experimental results comparing our
user profiling strategies are presented in Section 5. Section 6
concludes the paper.

2 RELATED WORK

User profiling strategies can be broadly classified into two
main approaches: document-based and concept-based ap-
proaches. Document-based user profiling methods aim at
capturing users’ clicking and browsing behaviors. Users’
document preferences are first extracted from the click-
through data, and then, used to learn the user behavior
model which is usually represented as a set of weighted
features. On the other hand, concept-based user profiling
methods aim at capturing users’ conceptual needs. Users’
browsed documents and search histories are automatically
mapped into a set of topical categories. User profiles are
created based on the users’ preferences on the extracted
topical categories.

2.1 Document-Based Methods

Most document-based methods focus on analyzing users’
clicking and browsing behaviors recorded in the users’
clickthrough data. On Web search engines, clickthrough
data are important implicit feedback mechanism from
users. Table 1 is an example of clickthrough data for the
query “apple,” which contains a list of ranked search
results presented to the user, with identification on the
results that the user has clicked on. The bolded documents
d1, d5, and d8 are the documents that have been clicked by
the user. Several personalized systems that employ click-
through data to capture users’ interest have been proposed
[1], [2], [10], [15], [18].

Joachims [10] proposed a method which employs
preference mining and machine learning to model users’
clicking and browsing behavior. Joachims’ method assumes
that a user would scan the search result list from top to
bottom. If a user has skipped a document di at rank i before

970 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010

TABLE 1
An Example of Clickthrough for the Query “apple”

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

clicking on document dj at rank j, it is assumed that he/she
must have scan the document di and decided to skip it.
Thus, we can conclude that the user prefers document dj
more than document di (i.e., dj <r0 di, where r0 is the user’s
preference order of the documents in the search result list).
Using Joachims’ proposition and the example clickthrough
data in Table 1, a set of document preference pairs as shown
in Table 2 can be obtained. After the document preference
pairs are obtained, an RSVM [10] is employed to learn the
user behavior model as a set of weighted features. Table 3
shows an example of Joachims’ user profile, which consists
of a set of weighted features.

Ng et al. [15] proposed an algorithm which combines a
spying technique together with a novel voting procedure to
determine users’ document preferences from the click-
through data. They also employed the RSVM algorithm to
learn the user behavior model as a set of weight features.
More recently, Agichtein et al. [1] suggested that explicit
feedback (i.e., individual user behavior, clickthrough data,
etc.) from search engine users is noisy. One major
observation is the bias of user click distribution toward
top ranked results. To resolve the bias, Agichtein suggested
to clean up the clickthrough data with the aggregated
“background” distribution. RankNet [6], a scalable imple-
mentation of neural networks, is then employed to learn the
user behavior model from the cleaned clickthrough data.

2.2 Concept-Based Methods

Most concept-based methods automatically derive users’
topical interests by exploring the contents of the users’
browsed documents and search histories. Liu et al. [13]
proposed a user profiling method based on users’ search
history and the Open Directory Project (ODP) [16]. The user
profile is represented as a set of categories, and for each
category, a set of keywords with weights. The categories
stored in the user profiles serve as a context to disambiguate
user queries. If a profile shows that a user is interested in
certain categories, the search can be narrowed down by
providing suggested results according to the user’s pre-
ferred categories.

Gauch et al. [9] proposed a method to create user profiles
from user-browsed documents. User profiles are created
using concepts from the top four levels of the concept
hierarchy created by Magellan [14]. A classifier is employed
to classify user-browsed documents into concepts in the
reference ontology. Xu et al. [20] proposed a scalable method
which automatically builds user profiles based on users’
personal documents (e.g., browsing histories and e-mails).
The user profiles summarize users’ interests into hierarch-
ical structures. The method assumes that terms that exist

frequently in user’s browsed documents represent topics
that the user is interested in. Frequent terms are extracted
from users’ browsed documents to build hierarchical user
profiles representing users’ topical interests.

Liu et al. and Gauch et al. both use a reference ontology
(e.g., ODP) to develop the hierarchical user profiles, while Xu
et al. automatically extract possible topics from users’
browsed documents and organize the topics into hierarchical
structures. The major advantage of dynamically building a
topic hierarchy is that new topics can be easily recognized
and extracted from documents and added to the topic
hierarchy, whereas a reference ontology such as ODP is not
always up-to-date. Thus, all of our proposed user profiling
strategies rely on a concept extraction method as described in
Section 3.1.1, which extracts concepts from Web-snippets2 to
create accurate and up-to-date user profiles.

3 PERSONALIZED CONCEPT-BASED QUERY

CLUSTERING

Our personalized concept-based clustering method consists
of three steps. First, we employ a concept extraction
algorithm, which will be described in Section 3.1.1, to
extract concepts and their relations from the Web-snippets
returned by the search engine. Second, seven different
concept-based user profiling strategies, which will be
introduced in Section 4, are employed to create concept-
based user profiles. Finally, the concept-based user profiles
are compared with each other and against as baseline our
previously proposed personalized concept-based clustering
algorithm [11], which is reviewed in Section 3.2.

3.1 Concept Extraction

3.1.1 Extracting Concepts from Web-Snippets

After a query is submitted to a search engine, a list of Web-
snippets is returned to the user. We assume that if a
keyword/phrase exists frequently in the Web-snippets of a
particular query, it represents an important concept related
to the query because it coexists in close proximity with the
query in the top documents. Thus, we employ the following
support formula, which is inspired by the well-known
problem of finding frequent item sets in data mining [7], to
measure the interestingness of a particular keyword/phrase
ci extracted from the Web-snippets arising from q:

supportðciÞ ¼
sfðciÞ
n
� jcij; ð1Þ

LEUNG AND LEE: DERIVING CONCEPT-BASED USER PROFILES FROM SEARCH ENGINE LOGS 971

TABLE 2
Document Preference Pairs Obtained Using Joachims’ Method

TABLE 3
An Example of User Profile as a Set of Weighted Features

2. “Web-snippet” denotes the title, summary, and URL of a Web page
returned by search engines.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

where sfðciÞ is the snippet frequency of the keyword/
phrase ci (i.e., the number of Web-snippets containing ci),
n is the number of Web-snippets returned, and jcij is the
number of terms in the keyword/phrase ci. If the support
of a keyword/phrase ci is greater than the threshold s
(s ¼ 0:03 in our experiments), we treat ci as a concept for
the query q. Table 4 shows an example set of concepts
extracted for the query “apple.” Before concepts are
extracted, stop words, such as “the,” “of,” “we,” etc., are
first removed from the snippets. The maximum length of
a concept is limited to seven words. These not only
reduce the computational time, but also avoid extracting
meaningless concepts.

3.1.2 Mining Concept Relations

We assume that two concepts from a query q are similar if
they coexist frequently in the Web-snippets arising from the
query q. According to the assumption, we apply the
following well-known signal-to-noise formula from data
mining [7] to establish the similarity between terms t1 and t2:

simðt1; t2Þ ¼ log
n � dfðt1 [t2Þ
dfðt1Þ � dfðt2Þ

�
logn; ð2Þ

where n is the number of documents in the corpus, dfðtÞ is
the document frequency of the term t, and dfðt1 [t2Þ is the
joint document frequency of t1 and t2. The similarity
simðt1; t2Þ obtained using the above formula always lies
between [0, 1].

In the search engine context, two concepts ci and cj could
coexist in the following situations: 1) ci and cj coexist in the
title; 2) ci and cj coexist in the summary; and 3) ci exists in
the title, while cj exists in the summary (or vice versa).
Similarities for the three different cases are computed using
the following formulas:

simR;titleðci; cjÞ ¼ log
n � sftitleðci [cjÞ

sftitleðciÞ � sftitleðcjÞ

�
logn; ð3Þ

simR;sumðci; cjÞ ¼ log
n � sfsumðci [cjÞ

sfsumðciÞ � sfsumðcjÞ

�
logn; ð4Þ

simR;otherðci; cjÞ ¼ log
n � sfotherðci [cjÞ

sfotherðciÞ � sfotherðcjÞ

�
logn; ð5Þ

where sftitleðci [cjÞ/sfsumðci [cjÞ are the joint snippet
frequencies of the concepts ci and cj in Web-snippets’
titles/summaries, sftitleðcÞ/sfsumðcÞ are the snippet frequen-
cies of the concept c in Web-snippets’ titles/summaries,
sfotherðci [cjÞ is the joint snippet frequency of the concepts ci
in a Web-snippet’s title and cj in a Web-snippet’s summary

(or vice versa), and sfotherðcÞ is the snippet frequency of
concept c in either Web-snippets’ titles or summaries. The
following formula is used to obtain the combined similarity
simRðci; cjÞ from the three cases, where �þ � þ � ¼ 1 to
ensure that simRðci; cjÞ lies between [0, 1]:

simRðci; cjÞ ¼ � � simR;titleðci; cjÞ þ � � simR;summaryðci; cjÞ
þ � � simR;otherðci; cjÞ:

ð6Þ

Fig. 1a shows a concept graph built for the query
“apple.” The nodes are the concepts extracted from the
query “apple,” and the links are created between concepts
having simRðci; cjÞ > 0. The graph shows the possible
concepts and their relations arising from the query “apple.”

3.2 Query Clustering Algorithm

We now review our personalized concept-based clustering
algorithm [11] with which ambiguous queries can be
classified into different query clusters. Concept-based user
profiles are employed in the clustering process to achieve
personalization effect. First, a query-concept bipartite
graph G is constructed by the clustering algorithm in which
one set of nodes corresponds to the set of users’ queries and
the other corresponds to the sets of extracted concepts. Each
individual query submitted by each user is treated as an
individual node in the bipartite graph by labeling each
query with a user identifier. Concepts with interestingness

972 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010

TABLE 4
Example Concepts Extracted for the Query “apple”

Fig. 1. An example of a concept space and the corresponding user
profile. (a) The concept space derived for the query “apple.” (b) An
example of user profile in which the user is interested in the concept
“macintosh.”

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

weights (defined in (1)) greater than zero in the user profile
are linked to the query with the corresponding interesting-
ness weight in G.

Second, a two-step personalized clustering algorithm is
applied to the bipartite graph G, to obtain clusters of similar
queries and similar concepts. Details of the personalized
clustering algorithm is shown in Algorithm 1. The
personalized clustering algorithm iteratively merges the
most similar pair of query nodes, and then, the most similar
pair of concept nodes, and then, merge the most similar pair
of query nodes, and so on. The following cosine similarity
function is employed to compute the similarity score
simðx; yÞ of a pair of query nodes or a pair of concept
nodes. The advantages of the cosine similarity are that it can
accommodate negative concept weights and produce
normalized similarity values in the clustering process:

simðx; yÞ ¼ Nx �Ny

k Nx kk Ny k
; ð7Þ

where Nx is a weight vector for the set of neighbor nodes of
node x in the bipartite graph G, the weight of a neighbor
node nx in the weight vector Nx is the weight of the link
connecting x and nx in G, Ny is a weight vector for the set of
neighbor nodes of node y in G, and the weight of a
neighbor node ny in Ny is the weight of the link connecting
y and ny in G.

Algorithm 1. Personalized Agglomerative Clustering

Input: A Query-Concept Bipartite Graph G

Output: A Personalized Clustered Query-Concept Bipartite

Graph Gp

// Initial Clustering

1: Obtain the similarity scores in G for all possible pairs of

query nodes using Equation (7).
2: Merge the pair of most similar query nodes (qi,qj) that

does not contain the same query from different users.

Assume that a concept node c is connected to both query

nodes qi and qj with weight wi and wj, a new link is created

between c and ðqi; qjÞ with weight w ¼ wi þ wj.
3: Obtain the similarity scores in G for all possible pairs of

concept nodes using Equation (7).

4: Merge the pair of concept nodes (ci,cj) having highest
similarity score. Assume that a query node q is connected to

both concept nodes ci and cj with weight wi and wj, a new

link is created between q and ðci; cjÞ with weight

w ¼ wi þ wj.
5. Unless termination is reached, repeat Steps 1-4.

// Community Merging

6. Obtain the similarity scores in G for all possible pairs of

query nodes using Equation (7).
7. Merge the pair of most similar query nodes (qi,qj) that

contains the same query from different users. Assume that a

concept node c is connected to both query nodes qi and qj
with weight wi and wj, a new link is created between c and

ðqi; qjÞ with weight w ¼ wi þ wj.
8. Unless termination is reached, repeat Steps 6-7.

The algorithm is divided into two steps: initial cluster-
ing and community merging. In initial clustering, queries
are grouped within the scope of each user. Community
merging is then involved to group queries for the

community. A more detailed example is provided in our
previous work [11] to explain the purpose of the two steps
in our personalized clustering algorithm.

A common requirement of iterative clustering algorithms
is to determine when the clustering process should stop to
avoid overmerging of the clusters. Likewise, a critical issue
in Algorithm 1 is to decide the termination points for initial
clustering and community merging. When the termination
point for initial clustering is reached, community merging
kicks off; when the termination point for community
merging is reached, the whole algorithm terminates.

Good timing to stop the two phases is important to the
algorithm, since if initial clustering is stopped too early (i.e.,
not all clusters are well formed), community merging merges
all the identical queries from different users, and thus,
generates a single big cluster without much personalization
effect. However, if initial clustering is stopped too late, the
clusters are already overly merged before community
merging begins. The low precision rate thus resulted would
undermine the quality of the whole clustering process.

The determination of the termination points was left
open in [11]. Instead, it obtained the optimal termination
points by exhaustively searching for the point at which the
resulting precision and recall values are maximized. Most
existing clustering methods such as [5], [19] and [4] used a
fixed criteria which stop the clustering when the intraclus-
ter similarity drops beyond a threshold. However, since the
threshold is either fixed or obtained from a training data set,
the method is not suitable in a personalized environment
where the behaviors of users are different and change from
time to time. In Section 5.4, we will study a simple heuristic
that determines the termination points when the intraclus-
ter similarity shows a sharp drop. Further, we show that
methods that exploit negative preferences produce termina-
tion points that are very close to the optimal termination
points obtained by exhaustive search.

4 USER PROFILING STRATEGIES

In this section, we propose six user profiling strategies
which are both concept-based and utilize users’ positive
and negative preferences. They are PJoachims�C , PmJoachims�C ,
PSpyNB�C , PClickþJoachims�C , PClickþmJoachims�C , a n d
PClickþSpyNB�C . In addition, we use PClick, which was
proposed in [11], as the baseline in the experiments. PClick
is concept-based but cannot handle negative preferences.

4.1 Click-Based Method (PClick)

The concepts extracted for a query q using the concept
extraction method discussed in Section 3.1.1 describe the
possible concept space arising from the query q. The concept
space may cover more than what the user actually wants.
For example, when the user searches for the query “apple,”
the concept space derived from our concept extraction
method contains the concepts “macintosh,” “ipod,” and
“fruit.” If the user is indeed interested in “apple” as a fruit
and clicks on pages containing the concept “fruit,” the user
profile represented as a weighted concept vector should
record the user interest on the concept “apple” and its
neighborhood (i.e., concepts which having similar meaning
as “fruit”), while downgrading unrelated concepts such as

LEUNG AND LEE: DERIVING CONCEPT-BASED USER PROFILES FROM SEARCH ENGINE LOGS 973

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

“macintosh,” “ipod,” and their neighborhood. Therefore,
we propose the following formulas to capture a user’s
degree of interest wci on the extracted concepts ci, when a
Web-snippet sj is clicked by the user (denoted by clickðsjÞ):

clickðsjÞ) 8ci 2 sj; wci ¼ wci þ 1; ð8Þ

clickðsjÞ) 8ci 2 sj; wcj ¼ wcj þ simRðci; cjÞ
if simRðci; cjÞ > 0;

ð9Þ

where sj is a Web-snippet, wci represents the user’s degree
of interest on the concept ci, and cj is the neighborhood
concept of ci.

When a Web-snippet sj has been clicked by a user, the
weight wci of concepts ci appearing in sj is incremented by
1. For other concepts cj that are related to ci on the concept
relationship graph, they are incremented according to the
similarity score given in (9). Fig. 1b shows an example of a
click-based profile PClick in which the user is interested in
information about “macintosh.” Hence, the concept “ma-
cintosh” receives the highest weight among all of the
concepts extracted for the query “apple.” The weights wti of
the concepts “mac os,” “software,” “apple store,” “iPod,”
“iPhone,” and “hardware” are increased based on (9),
because they are related to the concept “macintosh.” The
weights wci for concepts “fruit,” “apple farm,” “juice,” and
“apple grower” remain zero, showing that the user is not
interested in information about “apple fruit.”

4.2 Joachims-C Method (PJoachims�C)

Joachims [10] assumed that a user would scan the search
results from top to bottom. If a user skipped a document di
before clicking on document dj (where rank of dj > rank of
di), he/she must have scanned di and decided not to click
on it. According to the Joachims’ original proposition as
discussed in Section 2.1, it would extract the user’s
document preference as dj <r0 di.

Joachims’ original method was based on users’ docu-
ment preferences. If a user has skipped a document di at
rank i before clicking on document dj at rank j, he/she must
have scanned the document di and decided to skip it. Thus,
we can conclude that the user prefers document dj more

than document di (i.e., dj <r0 di, where r0 is the user’s
preference order of the documents in the search result list).

We extended Joachims’ method, which is a document-
based method, to a concept-based method (Joachims-C).
Instead of obtaining the document preferences dj <r0 di,
Joachims-C assumes that the user prefers the concepts CðdjÞ
associated with document dj to the concepts CðdiÞ asso-
ciated with document di, and produces the corresponding
concept preferences. The idea is captured in the following
proposition:

Proposition 1 (Joachims-C Skip Above). Given a list of
search results for an input query q, if a user clicks on the
document dj at rank j, all the concepts CðdiÞ in the unclicked
documents di above rank j are considered as less relevant than
the concepts CðdjÞ in the document dj, i.e., (CðdjÞ <r0 CðdiÞ,
where r0 is the user’s preference order of the concepts extracted
from the search results of the query q).

Using the example in Table 1, the user did not click on d2,
d3, and d4, but clicked on d5. Thus, according to Proposition 1,
we can conclude that the concepts Cðd5Þ is more relevant to
the user than the concepts in the other three unclicked
documents (i.e., Cðd2Þ, Cðd3Þ, and Cðd4Þ). The concept
preference pairs extracted using Joachims-C method are
shown in Table 5.

After the concept preference pairs are identified using
Proposition 1, a ranking SVM algorithm [10] is employed to
learn the user’s preferences, which is represented as a
weighted concept vector. Given a set of concept preference
pairs T , ranking SVM aims at finding a linear ranking
function fðq; cÞ to rank the extracted concepts so that as
many concept preference pairs in T as possible are satisfied.
fðq; cÞ is defined as the inner product of a weight vector w!
and a feature vector of query concept mapping �ðq; cÞ,
which describes how well a concept c matches the user’s
interest for a query q.

Fig. 2 is an example showing how the weight vector w!
affects the ordering of the extracted concepts, where the target
user concept preferences is (“macintosh” <r� “mac os” <r�

“iPod” <r� “iPhone” <r� “fruit”). We can see that w1
�! is

better than w2
�!, because w1

�! correctly ranks the concepts as
(“macintosh” <w1

“mac os” <w1
“iPod” <w1

“iPhone” <w1

974 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010

TABLE 5
Concept Preference Pairs Obtained Using Joachims-C Methods

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

“fruit”), while w2
�! ranks the concepts as (“fruit”<w2

“mac os”
<w2

“iPhone” <w2
“macintosh” <w2

“iPod”).
The feature vector

�ðq; cÞ ¼ ½Feature c1; Feature c2 ; . . . ; Feature cn�

for the ranking SVM training is composed of all the
extracted concepts for a query q. For each concept ci, we
create a feature vector

�ðq; ciÞ ¼ ½Feature c1; Feature c2; . . . ; Feature cn�

which is defined as follows:

Feature ck ¼
1; if k ¼ i;
simRðci; cjÞ; if simRðci; ckÞ > 0;
0; otherwise:

8<
: ð10Þ

The concept preference pairs together with the feature
vectors serve as the input to the ranking SVM algorithm. The
ranking SVM algorithm outputs a weight vector w! such that
the maximum number of the following inequalities holds:

8ðci; cjÞ 2 r0k; ð1 � k � nÞ : w!� �ðqk; ciÞ > w!� �ðqk; cjÞ;
ð11Þ

where ðci; cjÞ 2 r0k is a concept pair corresponding to the
concept preference pair (ci <r0

k
cj) of the query qk, which

means that ci should rank higher than cj in the target
concept ordering of r0k.

The weight vector

w!¼ ðwFeature c1
; wFeature c2

; . . . ; wFeature cnÞ

determines the user preferences on the extracted concepts.
For all the concepts c1, c2; . . . ; ci extracted for the query q,
the user preferences are stored in the corresponding weight
values wFeature c1

, wFeature c2
; . . . ; wFeature cn , creating a con-

cept preference profile

PJoachims�C ¼ ðwFeature c1
; wFeature c2

; . . . ; wFeature cnÞ

for the query q. Table 6 shows an example of feature
weights resulted from RSVM Training for the query q ¼
apple (where the user’s topical preferences are “fruit” and
“farm”) using Joachims-C method from our experiments.

4.3 mJoachims-C Method (PmJoachims�C)

mJoachims extends Joachims, which only considers un-
clicked pages above a clicked page, by considering

unclicked pages both above and below a clicked page
[15]. As with Joachims-C, we extend mJoachims into
mJoachims-C by deriving concept-preference pairs from
page-preference pairs.

Proposition 2 (mJoachims-C Skip Above+Skip Next).
Given a set of search results for a query, if document di at rank
i is clicked, dj is the next clicked document right after di (no other
clicked links between di and dj), and document dk at rank k
between di and dj (i < k < j) is not clicked, then conceptsCðdkÞ
in document dk is considered less relevant than the concepts
CðdjÞ in document dj (CðdjÞ <r0 CðdkÞ), where r0 is the user’s
preference order of the concepts extracted from the search results
of the query q). The predictions obtained are combined with those
obtained from Proposition 1 (Joachims-C method) above.

Table 7 shows the concept preference pairs extracted
using mJoachims-C method with the clickthrough in Table 1.
The concept preference pairs obtained using Proposition 2
are input to the ranking SVM algorithm, same as in
PJoachims�C described in Section 4.2, to create the user profile
PmJoachims�C on the concepts c1, c2; . . . ; ci extracted for the
query q. Table 6 shows an example of feature weights
resulted from RSVM Training for the query q ¼ apple (where
the user’s topical preferences are “fruit” and “farm”) using
mJoachims-C method from our experiments.

4.4 SpyNB-C Method (PSpyNB�C)

Both Joachims and mJoachims are based on a rather strong
assumption that pages scanned but not clicked by the user
are considered uninteresting to the user, and hence,
irrelevant to the user’s query. SpyNB does not make this
assumption [15], but instead assumes that unclicked pages
could be either relevant or irrelevant to the user. Therefore,
SpyNB treats clicked pages as positive samples and
unclicked pages as unlabeled samples in the training
process. The problem of finding user preferences becomes
one of identifying from the unlabeled set reliable negative
documents that are considered irrelevant to the user.

The “Spy” technique incorporates a novel voting proce-
dure into a Naı̈ve Bayes classifier [12] to derive reliable
negative examples from the unlabeled set. Let “þ” and “�”
denote the positive and negative classes, and D ¼
d1; d2; . . . ; dn a set of N documents in the search result list.

LEUNG AND LEE: DERIVING CONCEPT-BASED USER PROFILES FROM SEARCH ENGINE LOGS 975

Fig. 2. Ordering of concepts “macintosh,” “mac os,” “iPod,” “iPhone,” and
“fruit” using weight vectors w1

�! and w2
�!.

TABLE 6
Example Feature Weights Obtained from RSVM Training

for the Query q ¼ apple

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

For each search result, SpyNB first extracts the words that
appear in the title, abstract, and URL, creating a word vector
ðw1; w2; . . . ; wMÞ. Then, a Naı̈ve Bayes classifier is built by
estimating the prior probabilities (PrðþÞ and Prð�Þ) and
likelihoods (PrðwjjþÞ and Prðwjj�Þ). The detail of the Naı̈ve
Bayes Algorithm is presented in [15].

The training data only contain positive and unlabeled
examples (without negative examples). Thus, the “Spy”
technique is employed to learn a Naı̈ve Bayes classifier. A
set of positive examples S is selected from P and moved
into U as “spies” to train a classifier using the Naı̈ve Bayes
algorithm above. The resulting classifier is then used to
assign probabilities PrðþjdÞ to each example in U [S, and
an unlabeled example in U is selected as a predicted
negative example (PN) if its probability is less than Ts.

Unfortunately, in the search engine context, most users
would only click on a few documents (positive examples)
that are relevant to them. Thus, only a limited number of
positive examples can be used in the classification
process, lowering the reliability of the predicted negative
examples (PN). To resolve the problem, every positive
example pi in P is used as a spy to train a Naı̈ve Bayes
classifier. Consequently, n predicted negative sets (PN1,
PN2; . . . ; PNn) are created with the n Naı̈ve Bayes
classifiers. Finally, a voting procedure is used to combine
the PNi into the final PN . The detail of the SpyNB
algorithm is discussed in [15].

After obtaining the positive and predicted negative
samples from the SpyNB, page preferences can be obtained.
As with Joachims-C and mJoachims-C, SpyNB-C gener-
alizes page preferences into concept preferences. Specifi-
cally, concept preference pairs are obtained by assuming
that concepts CðdjÞ in the positive sample dj are more
relevant than concept CðdiÞ in the predicted negative
sample dj (i.e., CðdjÞ <r0 CðdiÞ). Finally, RSVM training,
which is similar to the one used in Joachims-C method, is
applied on the extracted concept preferences to learn a user
profile PSpyNB�C which is represented as a set of weight
features. Table 6 shows an example of feature weights
obtained from RSVM training in our experiment for the
query q ¼ apple (where the user’s topical preferences are
“fruit” and “farm” using the SpyNB-C method.

4.5 Click+Joachims-C Method (PClickþJoachims�C)

In our previous work [11], we observed that PClick is good in

capturing user’s positive preferences. In this paper, we

integrate the click-based method, which captures only

positive preferences, with the Joachims-C method, with

which negative preferences can be obtained. We found that

Joachims-C is good in predicting users’ negative prefer-

ences. Since both the user profiles PClick and PJoachims�C are

represented as weighted concept vectors, the two vectors

can be combined using the following formula:

wðC þ JÞci ¼ wðCÞci þ wðJÞci ; if wðJÞci < 0;

wðC þ JÞci ¼ wðCÞci ; otherwise;
ð12Þ

where wðC þ JÞci 2 PClickþJoachims�C , wðCÞci 2 PClick, and

wðJÞci 2 PJoachims�C . If a concept ci has a negative weight

in PJoachims�C (i.e., wðJÞci < 0), the negative weight will be

added to

wðCÞci in PClick
�
i:e:; wðJÞci þ wðCÞci

�
forming the weighted concept vector for the hybrid profile

PClickþJoachims�C .

4.6 Click+mJoachims-C Method (PClickþmJoachims�C)

Similar to Click+Joachims-C method, a hybrid method

which combines PClick and PmJoachims�C is proposed. The

two profiles are combined using the following formula:

wðC þmJÞci ¼ wðCÞci þ wðmJÞci ; if wðmJÞci < 0;

wðC þmJÞci ¼ wðCÞci ; otherwise;
ð13Þ

where

wðC þmJÞci 2 PClickþmJoachims�C; wðCÞci 2 PClick;

and wðmJÞci 2 PmJoachims�C . If a concept ci has a negative

weight inPmJoachims�C (i.e.,wðmJÞci < 0), the negative weight

will be added to wðCÞci in PClick (i.e., wðmJÞci þ wðCÞci)
forming the weighted concept vector for the hybrid profile

PClickþmJoachims�C .

976 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010

TABLE 7
Concept Preference Pairs Obtained Using mJoachims-C Method

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

4.7 Click+SpyNB-C Method (PClickþSpyNB�C)

Similar to Click+Joachims-C and Click+mJoachims-C meth-
ods, the following formula is used to create a hybrid profile
PClickþSpyNB�C that combines PClick and PSpyNB�C :

wðC þ sNBÞci ¼ wðCÞci þ wðsNBÞci ; if wðsNBÞci < 0;

wðC þ sNBÞci ¼ wðCÞci ; otherwise;

ð14Þ

where wðC þ sNBÞci 2 PClickþSpyNB�C , wðCÞci 2 PClick, and
wðsNBÞci 2 PSpyNB�C . If a concept ci has a negative weight
in PSpyNB�C (i.e., wðsNBÞci < 0), the negative weight will be
added to wðCÞci in PClick (i.e., wðsNBÞci þ wðCÞci) forming
the weighted concept vector for the hybrid profile
PClickþSpyNB�C .

5 EXPERIMENTAL RESULTS

In this section, we evaluate and analyze the seven concept-
based user profiling strategies (i.e., PClick, PJoachims�C ,
PmJoachims�C , PSpyNB�C , PClickþJoachims�C , PClickþmJoachims�C ,
and PClickþSpyNB�C). Our previous work had already shown
that concept-based profiles are superior to document-based
profiles [11]. Thus, the evaluation between concept-based
and document-based profiles is skipped in this paper. The
seven concept-based user profiling strategies are compared
using our personalized concept-based clustering algorithm
[11]. In Section 5.1, we first describe the setup for
clickthrough collection. The collected clickthrough data
are used by the proposed user profiling strategies to create
user profiles. We evaluate the concept preference pairs
obtained from Joachims-C, mJoachims-C, and SpyNB-C
methods in Section 5.2. In Section 5.3, the seven concept-
based user profiling strategies are compared and evaluated.
Finally, in Section 5.4, we study the performance of a
heuristic for determining the termination points of initial
clustering and community merging based on the change of
intracluster similarity. We show that user profiling methods
that incorporate negative concept weights return termina-
tion points that are very close to the optimal points obtained
by exhaustive search.

5.1 Experimental Setup

The query and clickthrough data for evaluation are adopted
from our previous work [11]. To evaluate the performance of
our user profiling strategies, we developed a middleware for
Google3 to collect clickthrough data. We used 500 test
queries, which are intentionally designed to have ambiguous

meanings (e.g., the query “kodak” can refer to a digital
camera or a camera film). We ask human judges to determine
a standard cluster for each query. The clusters obtained from
the algorithms are compared against the standard clusters to
check for their correctness. The 100 users are invited to use
our middleware to search for the answers of the 500 test
queries (accessible at [3]). To avoid any bias, the test queries
are randomly selected from 10 different categories. Table 8
shows the topical categories in which the test queries are
chosen from. When a query is submitted to the middleware, a
list containing the top 100 search results together with the
extracted concepts is returned to the users, and the users are
required to click on the results they find relevant to their
queries. The clickthrough data together with the extracted
concepts are used to create the seven concept-based user
profiles (i.e., PClick, PJoachims�C , PmJoachims�C , PSpyNB�C ,
PClickþJoachims�C , PClickþmJoachims�C , and PClickþSpyNB�C). The
concept mining threshold is set to 0.03 and the threshold for
creating concept relations is set to zero. We chose these small
thresholds so that as many concepts as possible are included
in the user profiles. Table 9 shows the statistics of the
clickthrough data collected.

The user profiles are employed by the personalized
clustering method to group similar queries together accord-
ing to users’ needs. The personalized clustering algorithm is
a two-phase algorithm which composes of the initial
clustering phase to cluster queries within the scope of each
user, and then, the community merging phase to group
queries for the community.

We define the optimal clusters to be the clusters obtained
by the best termination strategies for initial clustering and
community merging (i.e., steps 6 and 8 in Algorithm 1). The
optimal clusters are compared to the standard clusters
using standard precision and recall measures, which are
computed using the following formulas:

precisionðqÞ ¼ jQrelevant

T
Qretrievedj

jQretrievedj
; ð15Þ

recallðqÞ ¼ jQrelevant

T
Qretrievedj

jQrelevantj
; ð16Þ

where q is the input query, Qrelevant is the set of queries that
exists in the predefined cluster for q, and Qretrieved is the set
of queries generated by the clustering algorithm. The
precision and recall from all queries are averaged to plot
the precision-recall figures, comparing the effectiveness of
the user profiles.

LEUNG AND LEE: DERIVING CONCEPT-BASED USER PROFILES FROM SEARCH ENGINE LOGS 977

TABLE 8
Topical Categories of the Test Queries

TABLE 9
Statistics of the Collected Clickthrough Data

3. The middleware approach is aimed at facilitating experimentation.
The techniques developed in this paper can be directly integrated into any
search engine to provide personalized query suggestions.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

5.2 Comparing Concept Preference Pairs Obtained
Using Joachims-C, mJoachims-C, and SpyNB-C
Methods

In this section, we evaluate the pairwise agreement between
the concept preferences extracted using Joachims-C, mJoa-
chims-C, and SpyNB-C methods. The three methods are
employed to learn the concept preference pairs from the
collected clickthrough data as described in Section 5.1. The
learned concept preference pairs from different methods
are manually evaluated by human evaluators to derive the
fraction of correct preference pairs. We discard all the ties
in the resulted concept preference pairs (i.e., pairs with the
same concepts) to avoid ambiguity (i.e., both ci > cj and
cj > ci exist) in the evaluation.

Table 10 shows the precisions of the concept preference
pairs obtained using Joachims-C, mJoachims-C, and
SpyNB-C methods. The precisions obtained from the
10 different users together with the average precisions are
shown. We observe that the performance of Joachims-C
and mJoachims-C is very close to each other (average
precision for Joachims-C method ¼ 0:5965 and mJoachims-
C method ¼ 0:6130), while SpyNB-C (average precision for
SpyNB-C method ¼ 0:6925) outperforms both Joachims-C
and mJoachims-C by 13-16 percent. SpyNB-C performs
better mainly because it is able to discover more accurate
negative samples (i.e., results that do not contain topics
interesting to the user). With more accurate negative
samples, a more reliable set of negative concepts can be
determined. Since the sets of positive samples (i.e., the
clicked results) are the same for all of the three methods,
the method (i.e., SpyNB-C) with a more reliable set of
negative samples/concepts would outperform the others.

RSVM is then employed to learn user profiles from the
concept preference pairs. The performance of the resulted
user profiles will be compared in Section 5.3.

5.3 Comparing PClick, PJoachims�C , PmJoachims�C ,
PSpyNB�C , PClickþJoachims�C , PClickþmJoachims�C , and
PClickþSpyNB�C

Fig. 3 shows the precision and recall values of PJoachims�C
and PClickþJoachims�C with PClick shown as the baseline.
Likewise, Figs. 4 and 5 compare, respectively, the precision
and recall of PmJoachims�C and PClickþmJoachims�C , and that of
PSpyNB�C and PClickþSpyNB�C , with PClick as the baseline.

An important observation from these three figures is that
even though PJoachims�C , PmJoachims�C , and PSpyNB�C are able
to capture users’ negative preferences, they yield worse
precision and recall ratings comparing to PClick. This is
attributed to the fact that PJoachims�C , PmJoachims�C , and
PSpyNB�C share a common deficiency in capturing users’
positive preferences. A few wrong positive predictions
would significantly lower the weight of a positive concept.
For example, assume that a positive concept ci has been
clicked many times, a preference cj <r0 ci can still be
generated by Joachims/mJoachims propositions, if there
ever exists one case in which the user did not click on ci but

978 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010

TABLE 10
Average Precisions of Concept Preference Pairs Obtained
Using Joachims-C, mJoachims-C, and SpyNB-C Methods

Fig. 3. Precision versus recall when performing personalized clustering
using PClick, PJoachims�C , and PClickþJoachims�C .

Fig. 4. Precision versus recall when performing personalized clustering
using PClick, PmJoachims�C , and PClickþmJoachims�C .

Fig. 5. Precision versus recall when performing personalized clustering
using PClick, PSpyNB�C , and PClickþSpyNB�C .

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

clicked on another document that was ranked lower in the
result list. Since PJoachims�C , PmJoachims�C , and PSpyNB�C
cannot effectively capture users’ positive preferences, they
perform worse than the baseline method PClick. On the other
hand, PClick captures positive preferences based on user
clicks, so an erroneous click made by users has little effect
on the final outcome as long as the number of erroneous
clicks is much less than that of correct clicks.

Although PJoachims�C , PmJoachims�C , and PSpyNB�C are not
ideal for capturing user’s positive preferences, they can
capture negative preferences from users’ clickthroughs very
well. For example, assume that a concept ci has been
skipped by a user many times, preferences ck1 <r0 ci, ck2 <r0

ci; . . . ; ckn <r0 ci (where ck1, ck2; . . . ; ckn are the clicked
concepts below ci) would be generated by these methods.
Hence, the concept ci would be considered less relevant
than the clicked concepts ck1, ck2; . . . ; ckn and assigned a
lower or even negative weight.

Since PJoachims�C , PmJoachims�C , and PSpyNB�C are able to
capture negative preferences from users’ clickthroughs,
while PClick is good at capturing positive preferences, we
propose three user profiling strategies, PClickþJoachims�C ,
PClickþmJoachims�C , and PClickþSpyNB�C , to integrate the pre-
dicted negative preferences from PJoachims�C , PmJoachims�C ,
and PSpyNB�C with the positive preferences from PClick. In
Figs. 3, 4, and 5, we observe that PClickþJoachims�C ,
PClickþmJoachims�C , and PClickþSpyNB�C produce significantly
better precision and recall ratings than that of PClick,
PJoachims�C , PmJoachims�C , and PSpyNB�C . From the F-measure
values in Table 11, we can observe that PClickþSpyNB�C
performs the best with an improvement of 25 percent over
the baseline PClick; PClickþJoachims�C and PClickþmJoachims�C tie
at the second position, with improvement of 18-20 percent
over the baseline. As discussed in Section 5.2, SpyNB-C
produces a more reliable set of negative concepts compared
to the others. With a more accurate set of negative prefer-
ences, PClickþSpyNB�C achieves better precision and recall
results comparing to PClickþJoachims�C and PClickþmJoachims�C .

The performance results support our belief that the
three integrated user profiles benefit from the positive
preferences of PClick that help to group similar queries
together and negative preferences derived from Joachims/
mJoachims/SpyNB method that help to separate dissim-
ilar queries into different clusters. Thus, they achieve
better precision and recall results compared to PClick,
PJoachims�C , PmJoachims�C , and PSpyNB�C . Finally, the preci-
sions of all methods drop sharply if community merging

is overperformed. Initial clustering is employed to prepare
the query clusters within the scope of each individual
user. Community merging is then employed to merge the
similar clusters resulted from initial clustering across
different users. If two big clusters from initial clustering
are wrongly merged because overperforming community
merging, the precision will drop sharply without improv-
ing recall. Thus, a good terminating point is required for
community merging to improve the recall, while main-
taining good precision. Section 5.4 provides the details on
how to obtain such a terminating point.

5.4 Termination Points for Individual Clustering to
Community Merging

As initial clustering is run, a tree of clusters will be built
along the clustering process. The termination point for
initial clustering can be determined by finding the point at
which the cluster quality has reached its highest (i.e.,
further clustering steps would decrease the quality). The
same can be done for determining the termination point for
community merging. The change in cluster quality can be
measured by 4Similarity, which is the change in the
similarity value of the two most similar clusters in two
consecutive steps. For efficiency reason, we adopt the
single-link approach to measure cluster similarity. As such,
the similarity of two cluster is the same as the similarity
between the two most similar queries across the two
clusters. Formally, 4Similarity is defined as

4SimilarityðiÞ ¼ simiðPqm; PqnÞ � simiþ1ðPqo ; PqpÞ; ð17Þ

where qm and qn are the two most similar queries in the ith
step of the clustering process, P ðqmÞ and P ðqnÞ are the
concept-based profiles for qm and qn, qo and qp are the two
most similar queries in the ðiþ 1Þth step of the clustering
process, P ðqoÞ and P ðqpÞ are the concept-based profiles for
qm and qn, and simðÞ is the cosine similarity. Note that a
positive 4Similarity means that step iþ 1 is producing
worse clusters than that of step i.

In our previous work [11], it is not easy to determine
where to cut the clustering tree in PClick, because the
similarity values decrease uniformly during the clustering
process. Figs. 6, 7, 8, and 9 show the change in similarity
values when performing initial clustering and community

LEUNG AND LEE: DERIVING CONCEPT-BASED USER PROFILES FROM SEARCH ENGINE LOGS 979

TABLE 11
Best F-Measure Values When Performing Personalized

Clustering using PClick, PJoachims�C , PmJoachims�C , PSpyNB�C ,
PClickþJoachims�C , PClickþmJoachims�C , and PClickþSpyNB�C

Fig. 6. Change in similarity values when performing personalized
clustering using PClick.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

merging of the personalized clustering algorithm using
PClick, PClickþJoachims�C , PClickþmJoachims�C , and PClickþSpyNB�C .

In Fig. 6, we can observe that similarity decreases quite

uniformly in PClick. The uniform decrease in similarity

values from PClick makes it difficult for the clustering

algorithm to determine the termination points for initial

clustering and community merging (the triangles are the

optimal termination points for initial clustering to commu-

nity merging).

We observe from the figures that PClickþJoachims�C ,

PClickþmJoachims�C , and PClickþSpyNB�C each exhibit a clear

peak in the initial clustering process. It means that at the

peak, the quality of the clusters is highest but further

clustering steps beyond the peak would combine dissimilar

clusters together. Compared to PClick, the peaks in these

three methods are much more clearly identifiable, making it

easier to determine the termination points for initial

clustering and community merging.

In Figs. 7, 8, and 9, we can see that the similarity values

obtained using PClickþJoachims�C , PClickþmJoachims�C , and

PClickþSpyNB�C decrease sharply at the optimal points (the

triangles in Figs. 7, 8, and 9). The decrease in similarity

values is due to the negative weights in the user profiles,

which help to separate the similar and dissimilar queries

into distant clusters. Dissimilar queries would get lower

similarity values because of the different signed concept

weights in the user profiles, while similar queries would get

high similarity values as they do in PClick. Table 12 shows

the distances between the manually determined optimal

points and the algorithmic optimal points, and the

comparison of the precision and recall values at the two

different optimal points. We observe that the algorithmic

optimal points for initial clustering and community mer-

ging usually are only one step away from the manually

determined optimal points. Further, the precision and recall

values obtained at the algorithmic optimal points are only

slightly lower than those obtained at the manually

determined optimal points.

The example in Table 13 helps illustrate the effect of

negative concept weights in the user profiles. Table 13

shows an example of two different profiles for the query

“apple” from two different users u1 and u2, where u1 is

interested in information about “apple computer” and u2 is

interested in information about “apple fruit.” With only

positive preferences (i.e., PClick), the similarity values for

“apple(u1)” and “apple(u2)” are 0.5, showing the rather

high similarity of the two queries. However, with both

positive and negative preferences (i.e., PClickþJoachims�C), the

similarity value becomes �0:2886, showing that the two

queries are actually different even when they share the

common “noise” concept “info.” With a larger separation

between the similar and dissimilar queries, the cutting point

can be determined easily by identifying the place where

there is a sharp decrease in similarity values.
To further study the effect of the negative concept weights

in the user profiles, we reverse the experiments by first

grouping similar queries together according to the prede-

fined clusters, and then, compute the average similarity

values for pairs of queries within the same cluster (i.e.,

similar queries) and pairs of queries not in the same

cluster (i.e., dissimilar queries) using PClick, PJoachims�C ,

PmJoachims�C , PSpyNB�C , PClickþJoachims�C , PClickþmJoachims�C ,

and PClickþSpyNB�C . The results are shown in Table 14. We

observe that PClick achieves a high average similarity value

980 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010

Fig. 8. Change in similarity values when performing personalized
clustering using PClickþmJoachims�C .

Fig. 7. Change in similarity values when performing personalized
clustering using PClickþJoachims�C .

Fig. 9. Change in similarity values when performing personalized
clustering using PClickþSpyNB�C .

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

(0.3217) for similar queries, showing that the positive

preferences alone from PClick are good for identifying similar

queries. PJoachims�C , PmJoachims�C , and PSpyNB�C achieve

negative average similarity values (�0:0154, �0:0032, and

�0:0059) for dissimilar queries. They are good in predicting

negative preferences to distinguish dissimilar queries.

However, as stated in Section 5.3, the wrong positive

predictions significantly lower the correct positive prefer-

ences in the user profiles, and thus, lowering the average

similarities (0.1056, 0.1143, and 0.1044) for similar queries.

PClickþJoachims�C , PClickþmJoachims�C , a n d PClickþSpyNB�C
achieve high average similarity values (0.2546, 0.2487, and

0.2673) for similar queries, but low average similarities

(0.0094, 0.0087, and 0.0091) for dissimilar queries. They

benefit from both the accurate positive preferences of PClick,

and the correctly predicted negative preferences from

PJoachims�C; PmJoachims�C; and PSpyNB�C:

Thus, PClickþJoachims�C , PClickþmJoachims�C , and PClickþSpyNB�C
perform the best in the personalized clustering algorithm
among all the proposed user profiling strategies.

6 CONCLUSIONS

An accurate user profile can greatly improve a search

engine’s performance by identifying the information needs

for individual users. In this paper, we proposed and

evaluated several user profiling strategies. The techniques

make use of clickthrough data to extract from Web-snippets

to build concept-based user profiles automatically. We

applied preference mining rules to infer not only users’

positive preferences but also their negative preferences, and

utilized both kinds of preferences in deriving users profiles.

The user profiling strategies were evaluated and compared

with the personalized query clustering method that we

proposed previously. Our experimental results show that

profiles capturing both of the user’s positive and negative

preferences perform the best among the user profiling

strategies studied. Apart from improving the quality of the

resulting clusters, the negative preferences in the proposed

user profiles also help to separate similar and dissimilar

queries into distant clusters, which helps to determine near-

optimal terminating points for our clustering algorithm.
We plan to take on the following two directions for

future work. First, relationships between users can be

mined from the concept-based user profiles to perform

collaborative filtering. This allows users with the same

interests to share their profiles. Second, the existing user

profiles can be used to predict the intent of unseen queries,

such that when a user submits a new query, personalization

can benefit the unseen query. Finally, the concept-based

user profiles can be integrated into the ranking algorithms

of a search engine so that search results can be ranked

according to individual users’ interests.

ACKNOWLEDGMENTS

This work was supported by grants 615806 and CA05/

06.EG03 from Hong Kong Research Grant Council. The

authors would like to express our sincere thanks to the

editors and the reviewers for giving very insightful and

encouraging comments.

LEUNG AND LEE: DERIVING CONCEPT-BASED USER PROFILES FROM SEARCH ENGINE LOGS 981

TABLE 14
Average Similarity Values for Similar/Dissimilar Queries

Computed Using PClick, PJoachims�C , PmJoachims�C , PSpyNB�C ,
PClickþJoachims�C , PClickþmJoachims�C , and PClickþSpyNB�C

TABLE 13
Example of PClick and PClickþJoachims�C for Two Different Users

TABLE 12
Comparison of Distances, Precision, and Recall Values at Algorithmic and Manually Determined Optimal Points

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] E. Agichtein, E. Brill, and S. Dumais, “Improving Web Search
Ranking by Incorporating User Behavior Information,” Proc. ACM
SIGIR, 2006.

[2] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning User
Interaction Models for Predicting Web Search Result Preferences,”
Proc. ACM SIGIR, 2006.

[3] Appendix: 500 Test Queries, http://www.cse.ust.hk/~dlee/
tkde09/Appendix.pdf, 2009.

[4] R. Baeza-yates, C. Hurtado, and M. Mendoza, “Query Recom-
mendation Using Query Logs in Search Engines,” Proc. Int’l
Workshop Current Trends in Database Technology, pp. 588-596, 2004.

[5] D. Beeferman and A. Berger, “Agglomerative Clustering of a
Search Engine Query Log,” Proc. ACM SIGKDD, 2000.

[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.
Hamilton, and G. Hullender, “Learning to Rank Using Gradient
Descent,” Proc. Int’l Conf. Machine learning (ICML), 2005.

[7] K.W. Church, W. Gale, P. Hanks, and D. Hindle, “Using Statistics
in Lexical Analysis,” Lexical Acquisition: Exploiting On-Line
Resources to Build a Lexicon, Lawrence Erlbaum, 1991.

[8] Z. Dou, R. Song, and J.-R. Wen, “A Largescale Evaluation and
Analysis of Personalized Search Strategies,” Proc. World Wide Web
(WWW) Conf., 2007.

[9] S. Gauch, J. Chaffee, and A. Pretschner, “Ontology-Based
Personalized Search and Browsing,” ACM Web Intelligence and
Agent System, vol. 1, nos. 3/4, pp. 219-234, 2003.

[10] T. Joachims, “Optimizing Search Engines Using Clickthrough
Data,” Proc. ACM SIGKDD, 2002.

[11] K.W.-T. Leung, W. Ng, and D.L. Lee, “Personalized Concept-
Based Clustering of Search Engine Queries,” IEEE Trans. Knowl-
edge and Data Eng., vol. 20, no. 11, pp. 1505-1518, Nov. 2008.

[12] B. Liu, W.S. Lee, P.S. Yu, and X. Li, “Partially Supervised
Classification of Text Documents,” Proc. Int’l Conf. Machine
Learning (ICML), 2002.

[13] F. Liu, C. Yu, and W. Meng, “Personalized Web Search by
Mapping User Queries to Categories,” Proc. Int’l Conf. Information
and Knowledge Management (CIKM), 2002.

[14] Magellan, http://magellan.mckinley.com/, 2008.
[15] W. Ng, L. Deng, and D.L. Lee, “Mining User Preference Using Spy

Voting for Search Engine Personalization,” ACM Trans. Internet
Technology, vol. 7, no. 4, article 19, 2007.

[16] Open Directory Project, http://www.dmoz.org/, 2009.
[17] M. Speretta and S. Gauch, “Personalized Search Based on User

Search Histories,” Proc. IEEE/WIC/ACM Int’l Conf. Web Intelligence,
2005.

[18] Q. Tan, X. Chai, W. Ng, and D. Lee, “Applying Co-training to
Clickthrough Data for Search Engine Adaptation,” Proc. Database
Systems for Advanced Applications (DASFAA) Conf., 2004.

[19] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, “Query Clustering Using
User Logs,” ACM Trans. Information Systems, vol. 20, no. 1, pp. 59-
81, 2002.

[20] Y. Xu, K. Wang, B. Zhang, and Z. Chen, “Privacy-Enhancing
Personalized Web Search,” Proc. World Wide Web (WWW) Conf.,
2007.

Kenneth Wai-Ting Leung received the BSc
degree in computer science from the University
of British Columbia, Canada, in 2002, and the
MSc degree in computer science in 2004 from
the Hong Kong University of Science and
Technology, where he is currently working
toward the PhD degree at the Department of
Computer Science and Engineering. His re-
search interests include search engines, Web
mining, information retrieval, and ontologies.

Dik Lun Lee received the BSc degree in
electronics from the Chinese University of Hong
Kong, and the MS and PhD degrees in computer
science from the University of Toronto, Canada.
He is currently a professor in the Department of
Computer Science and Engineering at the Hong
Kong University of Science and Technology. He
was an associate professor in the Department of
Computer Science and Engineering at the Ohio
State University. He was the founding confer-

ence chair for the International Conference on Mobile Data Management
and served as the chairman of the ACM Hong Kong Chapter in 1997.
His research interests include information retrieval, search engines,
mobile computing, and pervasive computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

982 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 7, JULY 2010

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 01,2010 at 02:48:16 UTC from IEEE Xplore. Restrictions apply.

